3 research outputs found

    Improved Signal Characterization via Empirical Mode Decomposition to Enhance in-line Quality Monitoring

    Get PDF
    The machine tool industry is facing the need to increase the sensorization of production systems to meet evolving market demands. This leads to the increasing interest for in-process monitoring tools that allow a fast detection of faults and unnatural process behaviours during the process itself. Nevertheless, the analysis of sensor signals implies several challenges. One major challenge consists of the complexity of signal patterns, which often exhibit a multiscale content, i.e., a superimposition of both stationary and non-stationary fluctuations on different time-frequency levels. Among time-frequency techniques, Empirical Mode Decomposition (EMD) is a powerful method to decompose any signal into its embedded oscillatory modes in a fully data-driven way, without any ex-ante basis selection. Because of this, it might be used effectively for automated monitoring and diagnosis of manufacturing processes. Unfortunately, it usually yields an over-decomposition, with single oscillation modes that can be split into more than one scale (this effect is also known as “mode mixing”). The literature lacks effective strategies to automatically synthetize the decomposition into a minimal number of physically relevant and interpretable components. This paper proposes a novel approach to achieve a synthetic decomposition of complex signals through the EMD procedure. A new criterion is proposed to group together multiple components associated to a common time-frequency pattern, aimed at summarizing the information content into a minimal number of modes, which may be easier to interpret. A real case study in waterjet cutting is presented, to demonstrate the benefits and the critical issues of the proposed approach

    OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes

    Get PDF
    Mutations in OPA1, a dynamin-related GTPase involved in mitochondrial fusion, cristae organization and control of apoptosis, have been linked to non-syndromic optic neuropathy transmitted as an autosomal-dominant trait (DOA). We here report on eight patients from six independent families showing that mutations in the OPA1 gene can also be responsible for a syndromic form of DOA associated with sensorineural deafness, ataxia, axonal sensory-motor polyneuropathy, chronic progressive external ophthalmoplegia and mitochondrial myopathy with cytochrome c oxidase negative and Ragged Red Fibres. Most remarkably, we demonstrate that these patients all harboured multiple deletions of mitochondrial DNA (mtDNA) in their skeletal muscle, thus revealing an unrecognized role of the OPA1 protein in mtDNA stability. The five OPA1 mutations associated with these DOA ‘plus’ phenotypes were all mis-sense point mutations affecting highly conserved amino acid positions and the nuclear genes previously known to induce mtDNA multiple deletions such as POLG1, PEO1 (Twinkle) and SLC25A4 (ANT1) were ruled out. Our results show that certain OPA1 mutations exert a dominant negative effect responsible for multi-systemic disease, closely related to classical mitochondrial cytopathies, by a mechanism involving mtDNA instability

    OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes.

    Get PDF
    International audienceMutations in OPA1, a dynamin-related GTPase involved in mitochondrial fusion, cristae organization and control of apoptosis, have been linked to non-syndromic optic neuropathy transmitted as an autosomal-dominant trait (DOA). We here report on eight patients from six independent families showing that mutations in the OPA1 gene can also be responsible for a syndromic form of DOA associated with sensorineural deafness, ataxia, axonal sensory-motor polyneuropathy, chronic progressive external ophthalmoplegia and mitochondrial myopathy with cytochrome c oxidase negative and Ragged Red Fibres. Most remarkably, we demonstrate that these patients all harboured multiple deletions of mitochondrial DNA (mtDNA) in their skeletal muscle, thus revealing an unrecognized role of the OPA1 protein in mtDNA stability. The five OPA1 mutations associated with these DOA 'plus' phenotypes were all mis-sense point mutations affecting highly conserved amino acid positions and the nuclear genes previously known to induce mtDNA multiple deletions such as POLG1, PEO1 (Twinkle) and SLC25A4 (ANT1) were ruled out. Our results show that certain OPA1 mutations exert a dominant negative effect responsible for multi-systemic disease, closely related to classical mitochondrial cytopathies, by a mechanism involving mtDNA instability
    corecore